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H F RSG-YOLOvIOn B IFEH TS
/N B BRI ik

L= LT, EEN, AR, L2, D%

LWARBFRAME BT TEFR, DR RE 264209

FEEE XS A 272 300l B 37 5 B AR AR TS 5T 30 G BE B/ H AR RRIE SRR S A, L YOLOVIOn (you only
look once version 10n) #5158 Jy FevfE | 5| A B 3Z WL HF 35 X (receptive field attention convolution, RFAConv ) 55 £
Conv 8, Y2 Mt 22 R I SZ B 28 [ ARRE , 455 T R DL Sh 25 /0 FOAN ., G s A 20 4 e R R AL BRBE 77 5 51 AN
PRI R 4 73 (small object enhance pyramid, SOEP) #tk, 5% F 2t ik i) CSP-OmniKernel ( cross stage partial-
omniKernel ) S RHFATRE (G BB A, BE R &/ HARKANPERE ; 51 A 42 Rl 23 W33 & ) (global channel-spatial
attention, GCSA ) #EH, 38 o 38 18 14 7 7 il 38 Ve hi-15 25 1) 1 0 R G L IR S A RRAIE P 35, Tl SRR AIE 151 42 )
WA 2, SR AR E SR EUEE 11, JE i RSG-YOLOv10n ( RFAConv-SOEP-GCSA-YOLOv10n) & 2438 %35 /N H An ke
DRI, T 3 Al a6 A58 80 P i T L 3 38 PR P 6 D g A T 0 Ak A T R e, 1K 25 3R . B A
RFAConv SOEP \GCSA 3 MEHIE i) RSC-YOLOvIOn BEANFAFHAA P A IR R AIF LBy 50 I (14744
KGREYIE E, ppso I FEBIELA 50 38 28 95 (AR 5) I (P-4 H5 FEAH £, ps0-05 EE YOLOVIOn BEHY 535115 K 6. 3
HAF 2.5 HAY 3.5 H A5 s R 2.8 1 a5, KRG B B BB AR s S BIRS B LR (YOLOVSn  YOLOV8n |
YOLOVION) AHIE 55 it 5  ( YOLOV3-ting . YOLOv6n . YOLOV7-ting ) J% %5 5 % % 5 461 71 ( RT-DETR-L) #] 1,
RSC-YOLOv10n AEHYFEBAR S B0 AT 058 5 B Al L, R RS B 5 5 5 RSC-YOLOv10n #E AU X th vb 24 (K
T W55 5F 2 G AR PR 5 TE e A AT AT AR A I, . E o E apso-os H YOLOvIOn 557!
3SR 0.9 T3 1. 3 T 43 L, B R AIZ AL BE 1 R ; RSG-YOLOV10n A5 8Y 75 AT AR AL G I 5500 1 v ke 4%
GRS AR W KA H AR AR SF 1 P 3 SR RAIE SIS /) B ARG BE J0 8558
KRR /N B ARG 5 75 5T s FAAE SRR s RSG-YOLOv10n; 7 & I L]
F[E 4y 35 :U495;TP391. 41 SERAREAD A X EHS :1672-0032(2025) 05-0090-12
SIAMKR ALk — A3k L, L 2R, 5. AT RSG-YOLOvIOn i 343 4 F 35 /s B AR il 7 ik [J]. Wb A i@

%54k ,2025,33(5) :90-101.

KONG Feiyi, FU Zhenshan, WANG Yugang, et al. Anti-interference and small object detection method for

road scene based on RSG-YOLOv10n[ J]. Journal of Shandong Jiaotong University,2025,33(5) :90-101.

0 35|87
B2 N TR R AR B T T B2 B R A R T — L B O O B AR

%E’Eﬂxﬁﬁ%ﬂf*‘qﬂ/ﬁﬁﬁl Uit/ A bs Al i?ETW%E'AB’J%Mi IR RO XA, FARKIE A AT
fi i3k — i) R B S R, A R TR A 0 B Ay S0 e i 785 I L) K R 4k L

Y75 B #A:2025-06-09

EETH: LA 8 AL 42 8 (ZR2022QF149)

FE—EEEN LK —(1999—), B, WA AL R £, £BH 75 6 % SLAM H ik Ao A2 4 22 E-mail : 2324294576@
qq. com,

« BEEEEN AHRL(1976—) , 5 LA EZA R, AL RAESFH, LXMW, T2 AT A T EMEA EHE
JR IR Ao HUAR &, T 1% &5, E-mail : 273482839@ qq. com,



%5 £L & —, 47 : 3T RSG-YOLOvIOn 3 B 5 i T4 5/ BARK Il )5 % 91
ARSI B o GG % > Bk A A Wi B AR I Bk MRk, H sh 2 il i b
F bR T B e, — R AR B BE L R YOLO (you only look once ) B85 il H Al AT: 4557

Il Py Aha 5 A T I 3 5 R IR 3 A X YOLO 5780 JF JR AR SE BF 92« X o B 4510 R — Fh S T
YOLOv8 B #t iy 5B.E MDSD-YOLO ( mlca denv4 seam dualConv-YOLO) |, 38 155 3& i AS #E U A5 H AR sg /N B
BRAGHIDRS B2 5 Li 251 $ ) Attention-YOLOvA B | 45 45 38 18 15 35 1 WL 55 5% 22 B, 336 98 I 2% B b Js)y
TREFAE s Xue 25" 3 1 YOLO-FSE ( YOLO-fasterNet shuffle attention EloU ) #6132 F [ 4% 5% i C3faster f&
A Shuffle Attention BEHL7: 5184 YOLOvS H C3 BEHAI 2k R4, i YOLO-FSE B2 Ak, i e 155 7Y
ZALHE J7 FERAE 48 BURE /75 Fan 2557 32 ) YOLOV8 #5178 o i %%, % ] BIFPN ( bidirectional feature
pyramid network ) FELHLHE ST /N HARFIEERY HARAG IR SIE E , R A SimAM (simple attention module ) #5411 4]
25 S Luo 25 5l 3 il S Ghost A5 fil EMA ( efficient multi-scale attention ) f& b i iff YOLOvS &
25, WE R E AR s S RO AR R SR IO AR . BRI il 5 | AR R AL AR
b 2 RBERAE Rl S5 HORWGHE YOLO BEAY | 45 3 B R 7 18 B A5 b i) H AR il PR g . SRR 51 1
BEFR BT 2 MR TR LA BN F R R S B AR AR AE— 8 AN A A DS B ik

F 22 Bk b 38 %37 50 B ARSI DO T — % B BRI 55, SR BEAE = A D7 T 1) A BR B T
e B R 'G FRAB A S 22 B RRE 45 RARA (U V35 5546 ) OGHR BB UL EE 35 5 TR AR R 2w H Arka
DASCR 5 2) FAAE R e BB /N B AR, HARROT/IN RO , Qi kb 947 A 440 Sl bRk 555 3) Sl 5
R PERE 2 R T RGP B A, S BG 5 HVR RIS, B An7EPH 28 B BLal T NI R I 28 UK 1T
H AR A R, 8055 B PRFRIE S  AATE A L S . EE X A s 3 x2S 5t T /Y B AR AT 55 , 7%
O LA S KRG R 5T BB/ B AR A 5 s 25 4 3 BURFE B S5 )

SR BRI, 7F YOLOv1On (you only look once version 10n) #8578 Eeah b |, &1 X5t BB AR £k Al L
25 KA T K& R ) 5, 78 YOLOv10n [ 2% F 5] A JE& A7 #0 B #: FH ( receptive field attention convolution ,
RFAConv ) #3 , iist 1 38 0 A2 B, i /D W s 40, DA 3 i B B Ab 3905 2% ST R B8 00 5 1 % 4G 00 St 1
BN H ] 2, $E H N B bR 18R 4 735 (small object enhance pyramid, SOEP) 3, & A SPDConv
( space-to-depth convolution) £ P2 E /N HFRERAE IRl & E P3 2, R A # Y CSP-OmniKernel ( cross
stage partial-omniKernel ) BEHHEATHRFIERE &, LU i % /N B s 14 460 0 442 B I e AR G 00 100 £8% 11 2 AR
L5 1 XA I H A % 48 T BURRAE SR 2K [R) BT, R FH 42 JR) 4 18 25 W] 7 & 77 (global channel-spatial attention,
GCSA) #E Pk, 3 18 388 18 S JHf A 4 1) Sl g S S 9 3 T 0G4 2 67 ARG, LA B0 1 5 A A\ e i BT 19 R AIE
AE T A& JR Al ¢ 22 o #4338 RSG-YOLOv10n ( RFAConv-SOEP-GCSA-YOLOv10n ) & 2438 % 3% 5t /N H b5
R DAY, DL HA 3 5 0] 25 B P I 206 IR Gl 25 KA H bp A7 25 38 B 37 5 AR AR S IS /N EARKS:
MEETT, o A B2 A 5T A8 PR AEE T e T/ B ARkl 42 1 2 7%

1 RSG-YOLOv10n #&ZY

YOLOv10 ARV EA T YOLO #5750 52 b s 20kl H A R A RE A, I i AL i SE Aty etk AR £k
EUGAL B BT F 3028 3l 35 [ 3 5 vh SR8 T PR/ H ARG I A OR 38 25 o Wy fiff DR 3 — () R, g i
YOLOv10 #5271, £ RSG-YOLOv10n & Z%iA 3 50/ B AR ALY AU 2R A R] 1 i

XF YOLOv10 #5750 By e 445 : 1) 765 T /2% ( Backbone Network ) 15| A RFAConv £5 1 | 18 5 455 760 75
02 RTE B BRI RS TR A RE 1 52) AE SR M 2% ( Neck Network ) SR SPDConv % FUHIPF 4 AE
Concat , X4 & F & /N HARFAE G P2 2 UEATRRAF AL BE, SR FH R4 CSPOmniKernel AL EA TARAF 2L A, $2
AL /N H AR R IPERE 3 3) ZESFRIMEK 5| A GCSA e | 5 i by AR 18] 4 SR AE B8 3 F04 SR AR #8556
F34) 78T 45 (Head Network ) R v10Detect ARSI 45 (1) 2 KRB RRAE BV R A N2, R H
f RS 25 R AL B AN BTV 55, SR TG B AE TR T3 R A [ PR AR ST A R B A , 12 e A 780 33 0 )
B RE RIS
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I

CSPOmniKernel
A

Concat

Head

40 x 40

1 : Conv A5 ARRAE s REACony Ay JR 32 WL Y 45 AR BR A 5 C21 Oy 5 By B 3% 422 FVRRAE il -G BB ; SCDown g A Pl R R AR AR BR
SPPF Sy Pl 25 H] 4 B AL B ER s PSA Sy im0 B HLIRI B ER ; CSPOmnikernel Ayl i (¥ FFAIE2E 5 B EL; SPDConv TR FE &
FRRAE ; Upsample S b SRAEAAE ; GCSA Sy 4 Jayil 18 25 [A) 11 s ; C2(CIB Sy i AL it A FRIE 3 S A5k 5 vIODetect S R 4
PRI G AR AE TSN H AR A 25 28 ;80X 80 ,40x40 ,20x 20 S FFAE PRI 25 R R/ (Byte) o
1 RSG-YOLOv1On #2745 #)
1.1 RFAConv &R
RFAConv 53R A5 1 35 FHp 28 W) 485 A | 4% 0 SR 8% 37 BF 132 3 77 (receptive field attention, RFA) 5
Bl S I S A A R I 2 R R B s ()RR AE , ISR P 4% 18] 1 75 0 WL ST S A AF 14 f) o 82
P 38 A AR A HE AR | PR IGTE SR YR A E AR AR A9 7 1 B AR A BLRRAE AN R, S IR ] S e
It BAnHONEE 7T . RFACony #SEHu i 0T8RSz BF A 23 (A RRIE A 2., fff RSG-YOLOv10n 5 AY T 47 1l 311
iR 1R SCF R R S R A ST B H AR IR i 58 . REAConv BEHZERY QNI 2 Fx .
RFAfH:  Group 3 E-‘ee[,[,% Softﬁlx»

kernel 3
Group 2 Softmax
T, >
> kernel 2
?*@30 Group 1 %9 i
Softmax
—> _»

kernel 1
Attention Map

ICxHxW

w 2 G,
Cx Hx roupcom,

Recetive-Field Spatial Feature
9ICxHx W

TE : CXHXW ki NFRFIE K, C hisE s, H O FRAE I BE , WO RRAIE ] 92 BE 5 AvgPool Sy F- Xt AL 454 53X 3 Group Conv
53 A FRERAT s Group 1, Group 2. Group 3 iy AL K BLHE Y 3 4~J3 4 s kernel 1 kernel 2 kernel 3 2y 3 /> Ix1 BT ;
Softmax A= i1 75 77 B 1Y BE 4T ; Attention Map A7 2 /7 8] ; Recetive-Field Spatial Feature “hy Ji&% 32 B 25 [A] 4511 ; Re-weight 4 Bl
L, 38 oL R RHAE A R R A BV 2550 5 Adjust Shape 2R HREAE LY JLAT 4544 ;3% 3Conv fy 3x3 FFHERAE s stride HESHE

B 2 RFAConv #2324
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RFAConv FH Y TAERAR A + 1) 30 2ok PR 7 28 45 FFOH il AR AIE P17 4 oy Ja 52 B 225 [ A 8T, O i)
HORGT AR RST Y 9 4855 2) X ARRIE A T4 Jm) P XAk , 2 A sz B ) AR AR5 L, JR L  1x 1
G EHAZ RN Softmax #AVEA BUEEAN RS2 BF A0 T AN 53 ) B 11 2 7 1] 5 g2 1 5 [ AP (i A Sfe 247 2 fim
KL, 2 3x3 A IR 15 B e 2R I i R 25 2R

F = Softmax{g"" [ AvgPool(X)] } x ReLU{Norm[g""(X)] }=AF, ,

g™ hy kxk (953G RL b R RWL IR /N s ReLU SR M8 I 26 Mk B OCH PR Norm 9 — Ak pR 4, X
R NFRIE IR 3 A A B T AR S F ¢ o 852 B2 (BRI
1.2 SOEP #&EiR

TEABSE )5 ik rhas i P2 A 2 4 =i /s B A L |_>|Up51mple|
K VERE  AAAE M T TS 2 2 1) THSE I R, &
BUBTAIAG IR A AR 5 2) i Ak LB B A AR I 1)
RO S MR A AAIS AT Y SR . A i Rk
BT, 3T I 2 5 A 5 0 4 85 1 26 ( path
aggregation feature pyramid network, PAFPN) 4
# SOEP /) HARH R 4 FHEHI ™ 454 P2 FI
P3 RRAE B3G5 A R0/ H AR 19 R RE 7 , 92D
TCAGE . SOEP KSR ZEHIMIE 3 Fiors. E:P2.P3 P4 P5 X'TW.Ilﬂﬁ%%ﬁ;ﬁl@ﬁ%%ﬁﬁ?ﬂﬂf’m

SOEP B T ff #i8 : 1) il i SPDCony P OSORTIRAES
BRERIER P2 JZIRHERE RS P3 J2RIE ;2) R CSPOmnikernel 5284 FLRN5 J5 HORFE(E Bl £
R A BRI S A 0 0 AR 2R 7, 39 s R X AN [) RUBE H BRI RS I BE 7, /N33

CSPOmnikernel 155 %y CSP 45445 OmniKernel 544" (45 & R4 AR5 R A5 3. — 50
S OmniKernel AT 2 2 OAFAEAS e, 55— A0 SOOI PR B I IR A AE , 4> 23 Sl i 1x 1 B FRZ
(ev2) HATIEIE R FRAERLS . CSPOmnikernel BEEREEORER T HRHAE IR A IR LR FRE , MR-G5 A8 4 Y
i, 5 7RI FRIRBETT

OmniKernel FEHURREAR B TARTRE A 4 8 ARRIE X e R™™Y 25 1x1 BRI  FRAE(S Bk
BRF 3 A3 3, BVRSR AT 3 R AF SRA R 53 3,3 AN 03 SR AL BRES S i i il 5 IF 28 1x1 B REA T IRl
JRiER A3 ST 1x 1 IR AT 73 B4R (DConv ) AL, SRR S s K33k 3 S IFATHY 1x31 31x1 31x31
AR FEE AT 3 B A R ZE B, A A AR 1T SOMR R 4 Ry 43 3 vl BUE T8 7 78 ) 853 ((dual channel attention
module, DCAM) ) FIATE 2 [H] 7 2 145 (frequency-based spatial attention module, FSAM ) 20 ji§ , $#5 M itk
F 2 ) 2 SR URHE , 38 R R E UG F AT 55 T 2R RERE /) o OmniKernel BEE5HANIE 4 PR

CSPOmniKernel -

!

DConv DConv DConv DConv
1x1 1x 31 31x1 31 x 31

A . A A

Convl x 1

a) HLEH b) DCAM fite ¢) FSAM fit

B 4 OmniKernel A3 254



94 LI 7R B 24 5 2 4 20254F9 #5334
DCAM #5% B ¢ 2 [6] 38 3 7 % 77 B2 Bk (spatial channel attention, SCA ) I M 3 8 3 ¥ & 77 & B
(frequency channel attention, FCA) ¥ ™% B A4 i, 78 S0 38 A1 25 38 % 4 /% 5 #9 3th fk ( global average
pooling, GAP )  {J 1 {8 B - 25 # (fast fourier transform, FFT) | 33 [t 3 {# B 28 44 (inverse fast fourier
transform, IFFT) Fl 1x1 5 BUESRRFIE (S S0 18 48 BE f9RDRLEE o SR GAP BRI & e 4y FRLAEJE 15 2]
AR IE R 4R R B SR AT FET BeRpAiE 5 B 2 S e 000, SR T TRFT o 28 3ad VR 0 I AR 1 A5
AT A8 0] 25 35, FSAM AR HRJE K DCAM A58 ) O RFAEAS Sl WA 1x 1 B, 48 FFT 284
JETEARBZ JC R AR, SR S D, FFE IFFT S84k &2 22 25 Bl 3l o DGV R AR B 2 R 2 il oy, 2
R E A B
1.3 GCSA #&E#

TEARGE BRI 2 P 2 v, DA Z 0 T8 (] YOG 2, AT RE I S AR AL P2 42 R 15 R M RE 0, SR T8 T
JIALH R SRR AE A , U [H] 145 B RS AN 7840, AL TG A OR] T 25 [R5 2L, 2 200 g b it O
SHEANTY o SR PR3 0 9 LA A R AL A R 2 )3 T LA Y GCSA A 334 588 Ay A1 1
(822 TR . 7 AT ARAIE I A9 22 Sy RO OC 2R, 412 i A AR XS SC SR IR ) A $i2 B ) A AR P BB R B

A S AU B TAERFR R 1) B ARRIE BRI ZERE B CXHXW 22 Ry WxHXC 52 ) il i 22 )2
it (multilayer perceptron, MLP ) 4l $ 38 3 [ 481 5C 5 , 58 — J2 86 M1 25 K5 30 18 B0 A DAy SR 1) 174, 3 ik
ReLU W pRACHEA TR LR AL B, 27 — J22 S0 45 45 3 T8 50K 52 3 B R 48 52 5 3 ) K R AIE TR 4B BE R S 3] C %
HXW ,5d@3:d Sigmoid VT ok - B 18 1 3 77 11 B i AP [ R 3 T 3 ) 181 78 o0 3R AR 3fe 4 3] 1 5 1Y)
FRIEA .

A GERALE ) TAEGLRE A 1) ¥ 1508 5 A4 R & 70 4 A, B AL C/4 AN T8aE ;2) X E iy
FROE BT EAT e B HRAE 5 3) FTRLA LN A TE TE DU , JFH5 3T LU = B Re ik KA A SRR 4 B ( CXHXW)
3 3o 308 T PR RLPIL TR AR T A VR S AR B B SRR IE R A B

AR IHLH ) TAERAR N 1) Fa ASFAE I, i 77 AR R 8RR K 30 a8 B e o IR 1 1/4
2) KLV AL 2 ReLU 30 R ECHAT IR M8 46 3) PRl I 77 B RUZ A, 188 B0k &2 2 5 ik
HEFE ;4) RHAIIH—A0)JZFN Sigmoid B pRECAE s (B T 55 00 B RGeS B9 R AIE 1 RN 23 8] 1 5 ) R B
JCER AR, 15 BN LW i AR

2 AIREEIE

2.1 RGHESR

1) 3086 PR 858 (CRRAE ) o AT ISR I, BE 4 Windows10 #2422 4t | Core (TM) i7 - 13400F 4b 2 % |
RTX4060 - .16 GB NAFLA K 8 GB B AFRY S MERE T, TR EE 2% ST HESR Pytorch 1. 13. 1, 4715 &
CUDA 11.7,

2) IR RS EERE, E R A 640 142 <640 14 %, ik s SGD, 22 2) %y 0. 01, Batchsize
8, AUKECH 250,

3) IR . SRIIAE S SODALOM i ™!, A 32 AR [] i 17 rh 3 B 10 000 5 P&l A, 4 4 AN ]
KA ] Be i3 3, R 3 T bR e 6 B2 A sh s g s AR 2, 730 o Person (17 N) \Bicycle ( H
f1%4) (Car(VNEL ) (Truck (B YK 42) (Electric vehicles (FEL 342 ) I Tricycles ( =% 4%) o R 8 Fr ik
6 2 2 R4 I LREE A SRR .

2.2 iEMEER

SE BB RE RO bR ORI P15 R PRSI HI 1 (mean average precision, mAP) E, ,, .5
Bt (param ) N, 7 sUS 5 UCE (floating point operations, FLOPs) N, %% (frames per second, FPS) N

R B0 S RS TN 45 SR A PTSE PR, A (] 8 S WASE U AG I 8 42 T o ~F- 240 KG B2 (average precision,
AP ) J A FD 05 BRI AGr 0 235 3R 1 0 1, 1 SRS BE X (B Dy 22 28 7 YRS B Y P S, R IO T L



#5M AL € — % TF RSG-YOLOVIOn 3 B3 5ehi -4 5/ H As kil 5 i 95
(intersection over union, IoU) F{E & 50 Bt X4E BESIME Eupso M ToU BI{E M 50 38 F 95 (K 5) BFiY)
YIRG BESE Ewpso-os VEARIURG I 25 FAETHTE I PEMFERR , £ apso T E apso-os B, A5 RIS 45 2R 1 K
TR . S B S WA RO > R ), S0 RO, AR il B 0 MR R AR R A TR 77
FUIBFUEON BRI 5 240 M s AR R B S A8, 3 H R 5 S OO, X b e ik PR ( central
processing unit, CPU) A58 RE 7 SR8 R . MvEipke s AT RS I B RE 7596 /2 SIS B P oK (4n A 3h 25 3k
% N, =30 b/s)
2.3 RFAConv #EHRIGIF XIS

BEXE O B AR AL AR 25 K AR I B RS B AR A DU 7 AR T T, S BOR I E B R AR R) 8 7R
YOLOv 10n £ 84 rfr 55| A\ RFAConv A& e 3% 4 J5E Conv A5, 2 55 fiE RFAConv 155 B 19 A7 2% 14 , >R H] Conv,
SPDConv , RFCBAMConv , RFCAConv 4 J JF Ji€ 1 BE XJ LU i 46 o SPDConv 5 B SR FH JE #0 F R HEHAR
RFCBAMConv #5 e >R F 3 38 — =5 [A] XU 13 22 1 L,

RFCAConv R 5 2 F1 B i A% 5% BF , RFAConv 4 %1 RFACony RBRBHER B L5 R
Yol it [ 38 DY 8z B 5 W) 2P AR s R R #5653 ik Epavso/ % Eapso-o5/ %
s RN 1 PR, MR 1Al 5] A RFAConv () Conv 59.7 40.2
EmAPSO \EmAPSO—()S Hﬁ Conv *ﬁﬁ%ﬁj\%u ij( 1.3 —ﬁﬁj\)ﬁ 1.4 SPDCony!? 59.8 40.7
ﬁﬁf—i s tt. SPDConv *ﬁﬂ%%”ij{ 1.2 ﬁﬁi}’)‘]—i 0.9 —ﬁﬁ RFCBAMCony! %’ 59.1 40.5
£, L RFCBAMConv BEBUAMHIRIR 1O FAML L LTIy o n
&, l RFCAConv 338K 1.2 H 43 85.0. 5 H P s,

RFAConv' " 61.0 41.6

RFAConv 5] 252 i FARA INACR o
2.4 SOEP #EHRIGIEIRIG

TE S I 5 5 AR AT AR A5/ N FARERZS , BRI/ RFAE AN A I AR R, O i
BN BFRAGKE IR , 76 YOLOv10n #%1 h 5| A SOEP Kl % b DConv AU Rl K(K=2"-
1,n=4.5.6) , K HR, KA BB i , AR R (3 S0 iR . SRS K XA DK B2 At 53 d A 52 iy,
FrXF LIRS . Baseline Sy HEfERRY , R YOLOVIOn #E5Y 5 S Z S ks RS 2 A9 72 iy it 5 0 a3 098 o
Z I, A

7 = AE, 50/ AN, x10°,
A AE apso = Eopso(K) = Eupso( Baseline) ,AN, = Ni(K) — N (Baseline) ,Z #K , FBBIRIA R HARKE
K 2 A HE AR A3 BN
AR 2 fros, ik 2 a0 Y K 200 ok

2 SOEP #&#k K (&3} ik ie 4
153163 it 5| A SOEP #H AU E, g H Baseline = B K BT s 2R

SRR A IR 1.6 FTAM 2.5 FAMA 2.7 Eisba, O e/ N0 z
LA IE, M K=31 i BRI T R BE R g m e ke -7 54
HRE BN, SOEP BEHLERE AL . K=1s 61.3 s 0.516
JBIES| A SOEP BB (BRI X/ H ARIR SRz K= 62.2 12.2 0.657
R Baseline JfERIRIFIS] AN HARK MR (P2) 1y K=63 62.4 14.7 0.428
BOMGEATE AT RIS I B0 45 SR N 3 TR, 2 3
AT BIA P2 B IB A B, sy Eopsoss He Baseline %3 SOEP RIS R
FLYER Y S350 18 0. 8 ' 43 45..0. 7 H 4345, 51 A SOEP 8 Eoavse/ % Epapso-os/ % Ny/10°
BRI LK) E | pso ~ E apso—os L Baseline iy 45 4 43 5] Baseline 59.7 40.2 8.4
WK 2.5 EAM L6 MBI P2 (RS B (7 P2 60.5 40.9 15. 1
BB EL N, It Baseline JEERIRI K 6. 7x10°, 5] A SOEP 62.2 41.8 12.2

SOEP [ K IMAR 7R ) 77 p5.32 B3R EL N, Eb Baseline FEvfEA5
RIK 3.8x10°, 5] A SOEP A6 A A1 At Y45 BE X U T 5 1A P2 ARG IR AL, HAH SR s b,
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AR B 27 g o7 4

2025 49 H

33 %

2.5 GCSA #EHRISFiXIE

TETE BEFREE A v, DA A 8 4 | 4 5 BOR 20 B i %, R AR AR B A 4, A DN X JRE 0 K, A
YOLOv10n #HIFF 5] A GCSA bR , 31 i B ) P 5URF A5 SR B IRE T3 o W AIESI A GCSA FEH A1
T BRFESRICEE T, e CBAM A4 | SE i | EMA it 3 b LR34 5 A ML ER & Baseline JE A

PEATPEREXT LEIRE , IR E5 RNk 4 s .

HI 2% 4 Al 51 GCSA Bk i A5 R - B85 B2 24 K

R4 CCSA ERBIEXIWER

E o Eoso-os e Baseline JEUEBTRI A HIHI K 0.6 714325 R B B
0.7 Fi5h A1, I CBAM BHAFHINIR 0.6 FAM A2 .0.3 iy ™™ o -2
2, H SE BERAMHINOR 0.9 TT4M40 0.8 FIAbA, I EMA i OO 27 06
YUY B 0.4 TT408 0.6 TAM &, GOSA BRI - ol
2 4 9 R P00 26 0 Bl 0 X 2 0 AR Efij " o

AEST, B 1B N T P i R F AR ARG

2.6 HBLKIE

NEAUEG|A SOEP \RFAConv ,GCSA 3 FifiHJ5 RSG-YOLOv1O0n A5 75 iy ek s 5CR 2 Xk 52 4 T B B 355
ARSI , L YOLOv10n AERY Sy JEMERETEY , Xof 3 A HEAT AN [ 44, 2EA T T Rl A A5 SR LR 5

x5 HBARER
B e A SOEP  RFAConv  GCSA  P/% R/%  Euwso/%  Enwsoos/% N,/10° N/10° Ny /(Wies™)
65.8  54.4 59.7 40.2 2.70 8.4 500
vV 64.4  57.6 62.2 41.8 3.01 12.2 285
vV 70.1  54.5 61.0 41.6 2.86 8.7 294
YOLOv10n
v 69.2  53.6 60. 3 40.9 3.11 9.7 396
vV Vv 719 56.5 62.8 42.8 316 12.4 200
vV vV vV 72,1 56.9 63.2 43.0 3.5 13.7 169

T+ VORTERE AR R A

32 5 AT BT YOLOVION A5, 8051 A SOEP BEHUR L E, sy Eourso-os SFHIEH 2.5 F 404516
0, F AR T /N HARGIGE /75 A5 A RFACony BT, P E, \pso Enapsoos 203K 4.3 H 53
MR SR ARG s BT A GCSA Bk,
P E, 50 Espso-os 53R 3.4 401506 43 A50F 0.7 [ 43 1, R GCSA B Ay B 742 51 18 B 7 5
R AR H PR AR B s ST 3 FIBEHRS , PUR VE,pso Espsoos 77 BIHE R 6.3 3 58.2.5 F 73

ML 3 EIr LA F oy, ZR REACony BN T

3.5 FAR AT 2.8 T 43 AR (ARG IDRS i B
BHRE LN, HEOK 32.6%, N, K 63. 1% , £
RITHREIGRB K, J5 WX AR R R 1 7 e 1 Ak
PR, Ny, WCE 169 Wi/s, il /2 1 B2 Bk
H ArAG I 52 2K
2.7 #REVEREXT LK IR

J 353 RSG-YOLOv10n #8578 pr 1 5 %%
PE, 5 HAT)Z A YOLO 2 51l A K
RT-DETR-L BERUHATXT b, il gn 45 Rk 6
iR

H3 6 Al 5ERSHR BRI 1L,
RSC-YOLOvIOn U (] E, pso+ E,apsoos H

EI=N=N
H &t

R6 ARRBEMEREXLLIXEHER

LY E,apso/ % Eps0-05/%  N,/10° N/10°
YOLOv3-ting 46. 8 30.4 8. 86 5.6
YOLOvSn 55.3 36.5 1.90 4.5
YOLOv6n 54.2 36.2 4.70 11.4
YOLOv7-ting 56.7 35.3 6.20 5.8
YOLOv8n 56. 4 37.1 3.00 8.7
RT-DETR-L 55.4 35.3 20. 00 60. 0
YOLOv10n 59.7 40.2 2.70 8.4
RSC-YOLOv10n 63.2 43.0 3.58 13.7




%55 1) ALK, % . FTF RSG-YOLOv1On i#i 37 50t T-40-45 /18 B ARAG I Jr 97
YOLOvSn BRI 735IBE K 7.9 A 43 55.6. 5 53 &4, b YOLOv8n AL 73 H3E K 6.8 H 43 55.5.9 A4 s, Ik
YOLOv10n ALHL 43 5 3% K 3.5 71 43 5. 2. 8 T 43 i s 5 AHIE 2 B it 18U AH LE, RSC-YOLOv10n #5154 1y
E . pso E napso-os E& YOLOV3-ting A7 43 5| HA K 16. 4 H 43 45, . 12. 6 'H 4345, F YOLOv6n FEH1 7351|184 9. 0
434 6.8 HAr 4, Hb YOLOV7-ting A A 73 536 K 6.5 H 43 45.7.7 B SEE SR L,
RSC-YOLOv10n # 7 [ N, .N; 217} RT-DETR-L # AU 17. 9% .22. 8% ,{H. E \pso  E apso—0s . RT-DETR-L
BRI R K 7. 8 F 43 7.7 F 4 Ao RSC-YOLOv10n AAIFERAR S $h it RN PR 550 S OBUHE Bl 1, Ao il
K RE R
2.8 1EEYEFAMRIE

GUE RSC-YOLOv10n #55Y () & Heth Fz AL RE 11, LI R 45 (adverse conditions dataset
with correspondences, ACDC) ™" JyJthill, Hri K KT WK E RS LRSS LA B K S
JR , A BGE PR S e 4

R b) K o)W )Wk
5 MHTHARFMHBAAR T

i PG T BOE 42 3L 3 400 Sk, Hih 2 660 5Kk [ ACDC B4 , 37 740 sk A, 24 53 Aok
AR 21. 76% . ADCD 4845 rh B4l B sh 2 b 5 or &, hrs 2880 55 SODATOM idfa 51
[F], Ay (i Pl 15 5 9 b 28 — 5, Xof 30 P 2 6 UE 50 4 AT OB bR TR 3 M 56 I AR HE AR bR A L A
SODA10M a4 h AR 2 257, Ha kb Bus (/A58 42) \Motoreycle (EEFL A ) 251, K38 H M50 UE SR SE 1
Bz 602 0 2 R A YIZREE DRAE (IR . 3 PR 56 UE S 48 L SODATOM #54s 45 B T8 B 5 b 1Ay
RSC-YOLOv 10n B #7552 i H rf 4G 30 o E 4745 76 3 P 30 TE 10 56, RSC-YOLOv10n 45 1 X} 3
PRSI RS SR AT 5 BRI £, apso Eapsoss L& YOLOvVIOn BERLI0 534K 0.9 143 ki (1. 3
A 53w, W] RSC-YOLOv10n #5704 X} 3 47 S 4 55 A1 T 18 B% 5 H A A i EL A 288 oo 1) 48 M Pk Rz £k
REJ1.

2.9 HRESATIALAG TR RiXIE

SR SODATOM $i4is 5 A3 FH 4 56 E 500 52 64 7 AT A0 AR A I R 56, X6 e 73 #7F RSG-YOLOv10n A5

AU YOLOv10n FEA (ARG IIRCR , Qi 6~9 FR .

a) Hillgs 1 b) #lis5 2 ) Hrllg s 3 d) il 4
B 6 YOLOvIOn #£%! 2t SODA10M 4% 4& 44 T ALALAGR ] BR

a) Kl 1 b) K 2 ¢) kil 3 d) Kz 4
7 RSC-YOLOv10n #2% 2t SODA10M # 4% 4& 45 T ALALK ) 2 R



98 ARS8 5 e 2 41 20254:9 71 33 %

2

a) K5t s b) Kl 6 ) K5t 7

8  YOLOv1On A A 3@ A 1 3o i A 5 45 4G T ALAL A 0 2R

(SEER

a) Kl s b) # R 6 c) K 7 d) R 8
9 RSC-YOLOv10n #£ 7 238 4 34 1E 40 38 45 69 " AL A ) 2k R

&1 6.7 WA 7E SODATOM i 4E 1, YOLOvIOn AEALZEAS L b /1N FI bk 3 3 77 76— 2 B 11 Y
K BGE, LHAR GRS S ORI I H A3 A7 45 B PPk i 35 B RBAVE  aniE 6a) \b) BrR;
RSG-YOLOv10n A5 713 BT A5 R HE A , AE T HE AR Hu IR Ak /s B b, 68 MR R AAS I BE ) T 5, 1 1] Ta)
b) Pz AEIEL 6b) Tb) b, B AT B iod 8 v 52 2% F) S I 2% A1 A B 08 99 X L B2 A4 Al A 1 A S0 A
YOLOv1On #RALRE B 4 E A SOETR AN 4240, i RSG-YOLOvIOn FEAY R H BRI A, 725 4456 1T 1Y
BRVERL o fEE 6c) To) AT Bl AR AT AR I H AR IAT AN, A F AR A HE B RGN X T AT
AR B G H B, RSG-YOLOv10n A1 U i b 45 A, YOLOV10n A1 R RESE A6 2 it F A%, UER
Hil /N FLAR I 7 T A I

FH AT 8 .9 TR A S8 PP B MR s PP i i B 2R ) R AU R OB B 570 AT SODATOM %%
A , 38 FHE 36 A S A 5 RO 2 K, PR T T i L AR AR R B o, T B R B A
T, 2t JE ) RSG-YOLOv10n HEAYAYRFEAHE A 1 A1 PE{E H YOLOVIOn #8058 . il UnfE &l 8a) b) i,
RIS A G Ab /N BRSBTS T 6 T S EORS , YOLOV 100 B X IHAS I 36 R £ 5 76181 9a) \b)
1, RSG-YOLOv10n B8 s A6 tH YOLOv1On #5046 iy AR . 7E K 9¢) (d) Hi, RSG-YOLOv10n £ 7
R PBGRA AR SR ECS /N BERASINBE ST , (B R T2 AR RISE T 7

3 &g

BEXFACIE A B 5 AT ST AR N B ARRRAE G55 55 S 2 H AR AR I R SR R R ) B2
RSC-YOLOV10n #47 ,

1) 51 RFAConv L Conv A5tk , 18 it 73 2H 45 AR e AP R 22 RO sz B 24 TR AR, I3 [) 2 i) 1
RIHLH] AW S 5L SOEP A, 255 CSP 5441 OmniKernel R IEATRAERE S, W25 42 /)
HARKIERE ; 1A GCSA #3840 38 1 v 58 07 38 18 Wk AL 5 25 TR0 3 0 R 5 DL 2R AL RR AR 1 3R
2Pk A R b SCEMBERE )

2) BEATTE RS, AHAR T YOLOv10n #2550 , 5] A RFAConv ,SOEP (GCSA 3 FifE 2 % RSC-YOLOv10n
BRI P R \E, rpso Eoapso-os ZX K 6.3 71534525 T143 05,35 40452, 8 T 40 i K IAS 4R 1 5 Y,
WK 32.6% ,N; K 63. 1% WAV R, 5 WX AL TR AR A B N, /N2 169 Mit/s 1 e
B2 B BRI S 2K

3) RS HERE A (YOLOvSn , YOLOv8n , YOLOv1On ) AH¥T 2% E A A ( YOLOv3-ting , YOLOv6n |



%55 1) FLK—, % I T RSG-YOLOv1On i 37 5P T3 5/ BARKN )y 99
YOLOv7-ting) s Z 4 A5 AL (RT-DETR-L) Af Lt , RSC-YOLOv 10n A5 #U 7 45 A% 2 45 FLIT s 53 0HL
BLlt b, AR BE e o

4) HEF TR RYIE HIE S RS B by KTy k% S 2R KR AR R B A, 28 GE M S TR AL
P4 o RSC-YOLOv10n AEAYXE i FPE 40 U EcH 8 64718 B 37 5 B AR KD B E apso E mapso-os & YOLOvV1On
FERL IR B3GR 0.9 43 a5 1. 3 T 43 5, R W] RSC-YOLOv10n AR5 27 R S 4 1 18 % 37 57 H b A
HA 1 & B Az AL RE

5) i1 TM%MW&%&WTSMMmMﬁﬁ%$R%YMQMMEMTﬁ%ﬁHE%Hm“
S H AR HEAE A5 25T L YOLOV 100 A 3 90 51 A% 7 Mo 5 70 38 PR 30 i 200 4 10 5 K VR L 25
KAWL KA ,RSG-YOLOV10n AL [ YOLOv10n A58 A 2 S 3 1 REAE $2 05 /N B R A T BE 77, 14
R A 2 A AR, VS 7, S0 0E RSG-YOLOv 10n A5 78 7 52 7% 38 [ 37 57 T A 4G I B R 68 o P
Bl

SE K

[1] SFEF, Fiz. YOLO **;f]i;iéazsb P BARE M 4R [T]. 3 AL A, 2024, 44(6) :1949-1958.

[2] rHiEsk, A%, AXRME, BREHR BN ELEE]T]. 9191‘3&7}’\ 2025, 47(3) :289-298.

[3] %%R,%%%,{%E,?.%me@WHE%E# B AN E]] LA GEF R ER, 2025, 33(2)
34-47.

[4] E4B, AV, /MK @B B4 YOLO Al B Ry R E[T]. i R FFM(TF M), 2025, 59(2):
249-260.

[5] DIWAN T, ANIRUDH G, TEMBHURNE J V. Object detection using YOLO ; challenges, architectural successors, datasets
and applications[ J]. Multimedia Tools and Applications, 2023, 82(6) :9243-9275.

[6] RENSQ, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks
[ C]//Proceedings of IEEE Transactions on Pattern Analysis and Machine Intelligence. California, USA; IEEE, 2017:

1137-1149.
[7] #patde, k&, #4a®m, 5 A TREREF I YOLO B AR LR [T]. & F 545 8 F 4k, 2022, 44(10):
3697-3708.

[8] LIUW, ANGUELOV D, ERHAN D, et al. SSD:single shot MultiBox detector[ C]//Computer Vision-ECCV 2016. Cham,
Germany ; Springer International Publishing, 2016.21-37.

[9] ZHU X, SUW, LU L, et al. Deformable detr: Deformable transformers for end-to-end object detectionn[ EB/OL]. (2020-
10-08) [ 2025-04—12]. https ; //arxiv. org/abs/2010. 04159.

[10] A&, FX%, K&K, . MDSD-YOLO: —# F 2 %% B Al & [ J]. i s KRB 2 &, 2025, 35
(9) :30-37.

[11] LIY, LIJG, MENG P. Attention-YOLOV4:a real-time and high-accurate traffic sign detection algorithm[ J]. Multimedia
Tools and Applications, 2023, 82(5) :7567-7582.

[12] XUET, LIUZW, LANS W, et al. YOLO-FSE;an improved target detection algorithm for vehicles in autonomous driving
[J]. IEEE Internet of Things Journal, 2025, 12(10) :13922-13933.

[13] FAN Z X, LIU S L. An improved YOLOv8n algorithm and its application to autonomous driving target detection[ C]//
Proceedings of IEEE 6th International Conference on Power, Intelligent Computing and Systems. Shenyang, China:IEEE,
2024.1133-1139.

[14] LUOYC, CIY S, JIANG S X, et al. A novel lightweight real-time traffic sign detection method based on an embedded
device and YOLOv8[ J]. Journal of Real-Time Image Processing, 2024, 21(2) :1-10.

[15] ZHANG X, LIU C, YANG D, et al. RFAConv;innovating spatial attention and standard convolutional operation[ EB/

OL]. (2023-04-06) [ 2025-04-10] . https ://arxiv. org/abhs/2304. 03198.

[16] &Ham, AZAR, A%, 5. KT REIW-YOLOvIOn #9 3 F %418 ) B ARt [ J/OL]. B A3 K. (2024-
09-20) [ 2025-05-25]. https : //link. cnki. net/urlid/11. 2402. td. 20240919. 1902. 003.

[17] E, A8k, N4, F ATEATHFHEOLLEX T BAAMNAR[]]. & F0FH K, 2024, 47(13):



100 7R 3 2 e 2 4 20254F9 H 33 %

157-166.
[18] Mk, FEA. AT % REHIERBEIBTSMLAL FEML[T]. Lo g k 353k, 2025, 48(2) :46-53.

[19] CUI'Y N, REN W Q, KNOLL A. Omni-kernel network for image restoration[ J]. Proceedings of the AAAI Conference on
Artificial Intelligence, 2024, 38(2) :1426-1434.

[20] FAN Y K, ZHANG K, ZHENG B, et al. GCSA-ResNet:a deep neural network architecture for malware detection[ J].
Scientific Reports, 2025, 15(1) ;:24098.

[21] HANJ H, LIANG X W, XU H, et al. SODAIOM: a large-scale 2D self/semi-supervised object detection dataset for
autonomous driving[ EB/OL]. (2021-06-21) [ 2025-05-21]. https : //arxiv. org/abs/2106. 11118.

[22] SUNKARA R, LUO T. No more strided convolutions orPooling: a new CNN building block forLow-resolution images
andSmall objects [ C]//Machine Learning and Knowledge Discovery in Databases. Cham, Germany: Springer Nature
Switzerland, 2023 :443-459.

[23] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[ C]//Computer Vision-ECCV 2018.
Cham, Germany ; Springer International Publishing, 2018:3-19.

[24] HU J, SHEN L, SUN G. Squeeze-and-excitation networks [ C ]//Proceedings of IEEE/CVF Conference on Computer
Vision and Pattern Recognition. Salt Lake City, UT, USA:IEEE, 2018.7132-7141.

[25] OUYANG D, HE S, ZHAN ], et al. Efficient Multi-Scale Attention Module with Cross-Spatial Learning [ EB/OL ].
(2023-05-23) [ 2025-05-12]. https ; //arxiv. org/abs/2305. 13563.

[26] LIANG S, WU H. Edge YOLO: Real-time intelligent object detection system based on edge-cloud cooperation in
autonomous vehicles[ EB/OL]. (2022-05-30) [ 2025-05-21]. https : //arxiv. org/abs/2205. 14942.

[27] SAKARIDIS C, WANG H, LI K, et al. ACDC:The adverse conditions dataset with correspondences for robust semantic
driving scene perceptio[ EB/OL]. (2021-04-27) [ 2025-05-21]. https : //arxiv. org/abs/2104. 13395.

Anti-interference and small object detection method for
road scene based on RSG-YOLOvI10n

KONG Feiyi, FU Zhenshan™ , WANG Yugang, FU Cong, DAI Xianxin, MA Dong

Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264209, China

Abstract; Addressing the issues of background interference, distant small objects, and feature loss in
autonomous driving road scene object detection, an improved model based on You Only Look Once version 10n
(YOLOv10n) is proposed. The receptive field attention convolution ( RFAConv) module is introduced to
replace the Conv module, extracting multi-scale receptive field spatial features and dynamically allocating
weights through attention mechanisms to enhance the model’s complex image processing capabilities. A small
object enhance pyramid (SOEP) module is incorporated, utilizing an improved cross stage partial-omniKernel
( CSP-OmniKernel ) module for feature information integration, significantly improving small object detection
performance. The global channel-spatial attention ( GCSA) module is introduced to enhance feature map
representation through the coupling mechanism of channel attention, channel shuffle, and spatial attention,
capturing global dependencies in feature maps and enhancing feature extraction capabilities, forming the RSG-
YOLOv10n complex road scene small object detection model. Ablation experiment, model performance
comparison experiment, generalization validation experiment, and visualization detection effect experiment are
conducted. Experimental results show that: after introducing the RFAConv, SOEP, and GCSA modules, the
RSG-YOLOv10n model’s precision P, recall R, mean average precision at 50 intersection over union threshold
E_ .ps, and mean average precision averaged over intersection over union thresholds from 50 to 95 (with a step

of 5) E_ ,psoos is improved by 6.3 percentage points, 2.5 percentage points, 3.5 percentage points, and 2. 8
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percentage points respectively compared to the YOLOv1On model, with significantly enhances detection
accuracy; compared with lower parameter models ( YOLOv5Sn, YOLOv8n, YOLOv1On), similar parameter
models ( YOLOv3-tiny, YOLOv6n, YOLOv7-tiny), and higher parameter model ( RT-DETR-L), the RSG-
YOLOv10n model achieves the highest detection accuracy with lower parameter count and floating-point
operations; the RSG-YOLOv10n model performs road scene object detection on a generalization validation
dataset composed of various adverse weather images including sandstorms, heavy snow, and dense fog, with
E ipso and E 55005 increasing by 0.9 percentage points and 1. 3 percentage points respectively compared to the
YOLOv10n model, demonstrating high robustness and generalization capability; the RSG-YOLOv10n model
exhibits strong feature extraction and small object detection capabilities in visualization detection experiments for
road scenes with dense occlusion, complex lighting, adverse weather, and coexisting near and distant objects.

Keywords ; small object detectionn; background interference ; feature loss; RSG-YOLOv10n; attention mechanism
(BLS%H 3 S08)

(L% 76 1)

absorption value and activation degree selected as evaluation indicators. An orthogonal experiment is conducted
to explore the optimal modification process. The microstructural characteristics of ordinary mineral powder and
aluminum ester modified mineral powder asphalt mastic are compared using fluorescence microscopy. Residual
stability and freeze-thaw splitting strength tests are performed on the aluminum ester modified AC-20C
specimens. The results show that the optimal modification conditions for aluminum ester modified mineral
powder are a test temperature of 80 “C, a mass fraction of aluminum ester mineral powder of 1. 0%, and a
modification time of 50 minutes. The activation degree of SBS modified AC-20C with aluminum ester modified
mineral powder is 27. 9 times that of ordinary mineral powder AC-20C, while the oil absorption value decreases
by 58. 7%. In terms of water stability performance, the residual stability of SBS modified AC-20C with
aluminum ester modified mineral powder increases by 4. 48% compared to ordinary mineral powder AC-20C,
and the freeze-thaw splitting strength increases by 6. 52%. Aluminum ester modified mineral powder can
effectively improve the water stability performance against stripping of SBS modified AC-20C.
Keywords ; asphalt mixture; Aluminate; limestone mineral powder; modification condition; asphalt mastic;

water stability performance
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