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Numerical simulation analysis of the stability of expansive soil slopes
improved by industrial bagasse-low-alkali ecological cement

WEI Wenrui, GUO Yanbo™ , CHEN Tianli, MENG Fayi, HUANG Wei,
SU Mincheng, CHEN Shuqing, LI Lei

Guangxi Environmental Protection Industry Investment Group Co., Lid., Nanning 530200, China

Abstract : To study the stability of industrial sugarcane residue (mass fraction of 1.2%)-low alkali ecological
cement (mass fraction of 7.0% ) improved expansive soil slopes ( hereinafter referred to as improved expansive
soil slopes) under rainfall conditions, this research analyzes the differences between improved and unimproved
expansive soils slope, as well as the intrinsic relationship between slope stability, deformation, and seepage.
Based on soil parameters obtained from laboratory tests, numerical simulation software COMSOL Multiphysics is
used to conduct large-scale slope rainfall intensity reduction simulations to explore the changes in effective
saturation, plastic strain, displacement, and slope stability coefficient of the two types of soil slopes during
rainfall. The results show that: 1) After continuous rainfall, the overall change in effective saturation of the two
types of soil slopes is small, with the effective saturation of the improved expansive soil slope greater than that of
the unimproved expansive soil slope; under the condition of considering only the influence of rainfall, the
effective saturation of the surface layer of the improved expansive soil slope at failure is greater than that of the
unimproved expansive soil slope. 2) Under rainfall conditions, plastic deformation in the unimproved expansive
soil slope mainly occurs at the toe, while the plastic strain in the improved expansive soil slope concentrates at
the crest, with the plastic strain of the improved expansive soil slope slightly larger than that of the unimproved
expansive soil slope. 3) After rainfall, displacements in both types of soil slopes occur at the crest, with the
displacement of the unimproved expansive soil slope being about twice that of the improved expansive soil slope ;
within a relatively large displacement range, the area of affected soil in the unimproved expansive soil slope is
larger, while the affected range of the improved expansive soil slope is limited to within 50 m around the plastic
deformation, with the displacement of the unimproved expansive soil slope extending to the toe. 4) Considering
the rainfall intensity reduction method, U-shaped plastic strain zones appear within both types of soil slopes,
with relative sliding occurring between the surface soil and deep soil; the plastic strain in the unimproved
expansive soil slope is about three times that of the improved expansive soil slope; the stability coefficients of the
unimproved expansive soil slope and improved expansive soil slope are 1. 12 and 1. 14, respectively, with the
maximum displacement of the unimproved expansive soil slope being about four times that of the improved
expansive soil slope.
Keywords : expansive soil slope; stability ; numerical simulation ;effective saturation; plastic strain
SRS )



