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Graded speed limit control strategy under highway congestion

YU Xue'?, FENG Pengfei'™*, DUAN Mengmeng'>*

1. College of Intelligent Transportation Modern Industry, Anhui Sanlian University, Hefei 230601, China;
2. School of Transportation and Logistics Engineering , Shandong Jiaotong University, Jinan 250357, China
3. National Engineering Research Center for Vehicle Driving Safety, Hefei 230601, China;
4. Anhui Provincial Key Laboratory of Traffic Information and Safety in General Universities, Hefei 230601, China

Abstract: To alleviate occasional congestion problems after highway traffic accidents, the traffic flow states

before and after accidents are simulated using the software VISSIM, and traffic flow data for non-congested and
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of the left side wall, and the middle inner side of the right side wall, with the maximum tensile stress peak
occurring on the upper outer side of the left side wall and the largest fluctuation amplitude generated on the inner
side of the top slab of the left chamber. 3) The vibration acceleration response of the top slab is larger, as it
transmits the vibration acceleration response along the tunnel side walls and the central diaphragm to the bottom
slab, with the top slab and side walls stabilizing around the second second, and the bottom slab stabilizing
around the first second; after stabilization, the peak vibration acceleration of the top slab is the largest, while
that of the bottom slab is the smallest. 4) As the burial depth of the tunnel increases, the settlement of the soil
at the bottom of the tunnel decreases, and the peak vibration acceleration of the top slab, side walls, and
bottom slab decreases, with a recommended burial depth of 2. 5 m to 3. 0 m; as the vehicle load amplitude
increases, the peak tensile stress, settlement, and peak acceleration of the tunnel all increase ; the vehicle load
applied directly above the comprehensive utility tunnel is the most detrimental to the tunnel, resulting in the
maximum peak tensile stress and acceleration, while moving the loading position away from the tunnel’s central
axis to the left or right generally reduces the peak tensile stress and vibration acceleration of each structure of the
tunnel. 5) An increase in the elastic modulus of the backfill soil helps to reduce the settlement and peak
acceleration of the tunnel. With the increase of groundwater level, the settlement at the bottom of the tunnel
initially decreases slightly and then increases.
Keywords: comprehensive utility tunnel; silty soil foundation; dynamic load; low plasticity clay;
acceleration response
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congested states are obtained. The Greenshields model and the Greenberg model are used to fit the speed-
density relationship curves for non-congested and congested states, respectively, and a highway traffic
congestion duration prediction model is constructed. Through the model, the congestion duration under different
upstream arrival flows and different traffic accident blockage times is calculated, and the model’s accuracy is
verified through simulation. The highway traffic congestion duration prediction model is combined with a genetic
algorithm to solve the vehicle speed when vehicles arrive at the queue tail position of the congested section,
thereby determining the optimal speed limit. A graded speed limit control strategy is proposed for congestion
situations, where multiple gradual speed limits are implemented for vehicles from the upstream section of the
accident, allowing the speed to decrease smoothly and restricting the number of vehicles in the congested area.
The results show that the mean absolute percentage error between the calculated and simulated results of
congestion duration under different upstream arrival flows and different blockage times is 14. 37% , indicating
that the traffic congestion duration prediction model has high accuracy and can be used to calculate the
congestion duration after highway accidents. After implementing the graded speed limit control strategy, when
the upstream arrival flow is 3 000 veh/h, the average queue length decreases from 2 141 m to 1 340 m, and the
average traffic flow speed in the congested section increases from 28. 7 km/h to 36. 0 km/h, demonstrating that
the graded speed limit control strategy can effectively alleviate highway congestion.

Keywords : highway ; congestion duration; graded speed limit; simulation
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