设为首页加入收藏

基于TCPA与DCPA的自主船舶应急避碰场景下优化人工势场算法

作者:王宗开,孙强,刘洋,林南均  发布时间:2025-10-06   编辑:赵玉真   审核人:郎伟锋    浏览次数:

基于TCPA与DCPA的自主船舶应急避碰场景下优化人工势场算法

王宗开1,孙强2,刘洋3,林南均4

1.泉州师范学院交通与航海学院,福建 泉州 336200;2.集美大学航海学院,福建 厦门 361021;

3.山东交通学院航运学院,山东 威海 264200;4.木浦海洋大学航运学院,韩国 木浦 58628

摘要:针对传统人工势场(traditional artificial potential field,T-APF)算法在自主船舶应急避碰场景中存在的局部最优问题和动态障碍物避碰局限性问题,提出一种基于最近会遇时间(time to closest point of approach,TCPA)和最近会遇距离(distance to closest point of approach,DCPA)的优化人工势场(enhanced artificial potential field,E-APF)算法,通过重构斥力势场函数,引入动态权重调整机制,并结合相对运动态势设计自适应斥力方向策略。仿真结果表明:在静态障碍物场景中,E-APF算法比T-APF算法能更早识别碰撞风险并规划更优路径;在动态障碍物场景中,可有效增大安全距离并减小转向幅度,显著提高障碍物风险评估和避碰决策的准确性。

关键词:自主船舶;应急避碰场景;T-APF算法;E-APF算法;TCPA;DCPA

Artificial potential field optimization algorithm for autonomous vessel emergency collision avoidance scenarios based on TCPA and DCPA

WANG Zongkai1, SUN Qiang2, LIU Yang3, IM Namkyun4

1.College of Transportation and Navigation, Quanzhou Normal University, Quanzhou 336200, China;

2. College of Navigation, Jimei University, Xiamen 361021, China;

3. School of Navigation and Shipping, Shandong Jiaotong University, Weihai 264200, China;

4. School of Navigation and Shipping, Mokpo National Maritime University, Mokpo 58628, Repubic of Korea

Abstract: To address the local optimum problem of the traditional artificial potential field (T-APF) algorithm and the limitations of dynamic obstacle avoidance in emergency collision avoidance scenarios for autonomous vessels, an enhanced artificial potential field (E-APF) algorithm based on time to closest point of approach (TCPA) and distance to closest point of approach (DCPA) is proposed. This algorithm reconstructs the repulsive potential field function, introduces a dynamic weight adjustment mechanism, and combines relative motion dynamics to design an adaptive repulsive direction strategy. Simulation results indicate that in static obstacle scenarios, the E-APF algorithm can identify collision risks earlier and plan better paths compared to the T-APF algorithm; in dynamic obstacle scenarios, it effectively increases safety distances and reduces steering angles, significantly improving the accuracy of obstacle risk assessment and collision avoidance decision-making.

Keywords: autonomous vessel; emergency collision avoidance scenary; T-APF algorithm; E-APF algorithm; TCPA; DCPA

        

通信地址:济南市长清大学科技园海棠路5001号 邮编:250357
《山东交通学院学报》编辑部电话:0531-80687340
《内燃机与动力装置》编辑部电话:0531-80687025
山东交通学院学报编辑部版权所有 网站浏览次数: