设为首页加入收藏

基于城市物流的两轮电动车续驶测试工况构建

作者:张琪,王文彬,屈恒博,蓝松  发布时间:2025-02-06   编辑:赵玉真   审核人:郎伟锋    浏览次数:

基于城市物流的两轮电动车续驶测试工况构建

张琪,王文彬,屈恒博,蓝松*

合肥工业大学汽车与交通工程学院,安徽 合肥  230009

摘要:为准确测试两轮电动车真实行驶状态下的实际续驶里程,使用全球定位系统(global positioning system,GPS)车速表和指南针应用软件采集2位外卖配送员在合肥市城区和城郊一周的实际行驶数据,综合考虑车速、路况等因素,采用主成分分析和K-means聚类分析方法,构建准确反映两轮电动车实际行驶状况的综合测试工况。分析结果表明:采用主成分分析和K-means聚类分析方法构建的工况更贴近两轮电动车日常使用场景,可以为其续驶能力评测提供更加科学的依据。

关键词:测试工况;主成分分析;K-means聚类分析;两轮电动车;续驶里程

Construction of driving test conditions for a two-wheeled electric vehicle based on urban logistics

ZHANG Qi, WANG Wenbin, QU Hengbo, LAN Song*

College of Automotive and Transportation Engineering, Hefei University of Technology, Hefei 230009, China

Abstract: To accurately test the actual range of two-wheeled electric vehicle and reflect their real-world driving conditions, GPS speedometers and compass application software are used to collect one week′s worth of actual driving data from two food delivery workers in both urban and suburban areas of Hefei city. Considering factors such as vehicle speed and road conditions comprehensively, principal component analysis (PCA) and K-means clustering methods are employed to construct a comprehensive testing scenario that can accurately reflect the actual operating conditions of two-wheeled electric vehicle. The analysis results show that the scenarios constructed using PCA and K-means clustering methods are closer to the daily usage scenarios of two-wheeled electric vehicle, which can provide a more scientific basis for evaluating their range capabilities.

Keywords: test condition; principal component analysis; K-means clustering analysis; two-wheeled electric vehicle; driving range

      

通信地址:济南市长清大学科技园海棠路5001号 邮编:250357
《山东交通学院学报》编辑部电话:0531-80687340
《内燃机与动力装置》编辑部电话:0531-80687025
山东交通学院学报编辑部版权所有 网站浏览次数: