设为首页加入收藏

基于AM-CNN-LSTM模型的柴油机NOx排放预测

作者:刘星,周圣凯,田淋瑕,邓小超,林鹏慧,刘泽都,雷艳  发布时间:2024-07-17   编辑:赵玉真   审核人:郎伟锋    浏览次数:

基于AM-CNN-LSTM模型的柴油机NOx排放预测

刘星1,周圣凯1,田淋瑕1,邓小超1,林鹏慧1,刘泽都2,雷艳2*

1.广西玉柴机器股份有限公司,广西 玉林  537000;

2.北京工业大学机械与能源工程学部汽车系,北京  100124

摘要:为精确控制选择性催化还原(selective catalytic reduction,SCR)系统的尿素喷射,提出一种基于注意力机制(attention mechanism,AM)的卷积神经网络(convolutional neural networks,CNN)-长短时记忆网络(long shortterm memory,LSTM)模型预测柴油机NOx排放的方法,根据柴油机NOx生成机理和车辆实际道路测试采集的数据选取相关变量;使用AM-CNN模型提取特征,利用LSTM模型对提取的特征进行分析预测NOx排放。结果表明:该混合模型对NOx排放的预测精度较高,计算时间较少,平均绝对误差为5.307×10-6,决定系数为0.932。根据预测模型中输入参数权重分析影响NOx生成的关键因素,可以为优化柴油机燃烧过程提供参考。

关键词:NOx排放;预测模型;AM-CNN-LSTM;深度学习;柴油机

Prediction of diesel engine NOx emission based on AM-CNN-LSTM model

LIU Xing1, ZHOU Shengkai1, TIAN Linxia1, DENG Xiaochao1LIN Penghui1, LIU Zedu2, LEI Yan2*

1. Guangxi Yuchai Machinery Co., Ltd., Yulin 537000, China;

2. Vehicle Engineering Department, Department of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China

Abstract:In order to accurately control the urea injection of the selective catalytic reduction (SCR) system, the research proposes a convolutional neural network(CNN)-long short term memory(LSTM) model based on the attention mechanism (AM), and applies it to predict diesel engine NOxemissions. The relevant variables are selected based on the diesel engine NOx generation mechanism and the data collects from actual vehicle road tests. The AM-CNN model is used to extract features, and the LSTM model is used to perform the extraction on the extracted features. The results show that the hybrid model has higher prediction accuracy for NOxemissions, with less calculation time, an average absolute error of 5.307×10-6, and a coefficient of determination of 0.932. Analyzing the key factors affecting NOxgeneration based on the weight of the input parameters in the prediction model can provide a reference for optimizing the diesel engine combustion process.

Keywords: NOxemission;prediction model; AM-CNN-LSTM; deep learning; diesel engine

        

通信地址:济南市长清大学科技园海棠路5001号 邮编:250357
《山东交通学院学报》编辑部电话:0531-80687340
《内燃机与动力装置》编辑部电话:0531-80687025
山东交通学院学报编辑部版权所有 网站浏览次数: